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The three-dimensional development of controlled transition in a flat-plate boundary 
layer is investigated by direct numerical simulation (DNS) using the complete 
Navier-Stokes equations. The numerical investigations are based on the so-called 
spatial model, thus allowing realistic simulations of spatially developing transition 
phenomena as observed in laboratory experiments. For solving the Navier-Stokes 
equations, an efficient and accurate numerical method was developed employing 
fourth-order finite differences in the downstream and wall-normal directions and 
treating the spanwise direction pseudo-spectrally. The present paper focuses on direct 
simulations of the wind-tunnel experiments by Kachanov et al. (1984, 1985) of 
fundamental breakdown in controlled transition. The numerical results agreed very 
well with the experimental measurements up to the second spike stage, in spite of 
relatively coarse spanwise resolution. Detailed analysis of the numerical data allowed 
identification of the essential breakdown mechanisms. In particular, from our 
numerical data, we could identify the dominant shear layers and vortical structures 
that are associated with this breakdown process. 

1. Introduction 
In spite of considerable research efforts over the last fifty years, laminar-turbulent 

transition is still far from being understood. This is particularly true for ‘open’ or 
‘ inflow-outflow ’ systems, such as boundary layers, considered here. For open-flow 
systems, transition is a spatially evolving process, where in ‘real ’ situations (natural 
transition), the transition process is initiated by environmental disturbances such as 
pressure fluctuations, vortical free-stream disturbances, sound, small-scale free-stream 
turbulence, etc. By virtue of certain receptivity mechanisms, which for wall boundary 
layers are enhanced by strong, local geometric variations such as steps, protuberances 
(roughness), suction slots or holes, locally strong pressure gradients, etc., the 
environmental disturbances generate instability waves within the boundary layers that 
can grow while propagating downstream and eventually leading to the breakdown to 
turbulence. Thus, the breakdown to turbulence is a consequence of the disturbance 
input into the flow system, e.g. the boundary layer. 

Therefore, in an ideal situation completely void of any disturbances, the transition 
process in a boundary layer flow could not evolve or, if already underway, would come 
to a halt and the flow would relax to a laminar undisturbed state, no matter how 
strongly ‘unstable’ the laminar base flow may be. This fundamental behaviour must 
have already been clearly understood by Schubauer & Skramstad (1 947), who realized 



212 U. Rist and H.  Fasel 

that a reduction of the environmental disturbance level (i.e. of free-stream turbulence) 
was crucial in order to be able to observe and study the transition process initiated by 
small-amplitude (linear) instability waves (Tollmien-Schlichting waves). After con- 
siderable reduction of the free-stream turbulence level of their wind tunnel, so-called 
‘controlled’ experiments could be conducted where transition was initiated by small 
two-dimensional disturbance waves that were produced by a vibrating ribbon. With 
these controlled transition experiments, it could be verified that the breakdown to 
turbulence is indeed a consequence of local disturbance input. Because of this direct 
dependence of the local state of the transition development on the disturbance input, 
controlled experiments (with the transition development triggered by controlled 
forcing) have been employed ever since for investigating transition (see, for example, 
Klebanoff, Tidstrom & Sargent 1962; Hama & Nutant 1963; Kachanov & Levchenko 
1984). 

From advances in theoretical understanding (Gaster 1968; Huerre & Monkewitz 
1990), today we know that this behaviour of the disturbance waves is due to the 
convective stability property of certain open flows, of which the boundary layer is an 
example. This is in contrast to the absolute stability property of closed flows (i.e. 
Taylor-Couette flow or Benard convection), where an initial, one-time excitation may 
be sufficient to carry the flow all the way from the laminar to the turbulent state 
provided that a characteristic stress parameter (such as the Reynolds number or 
Rayleigh number) is large enough so that the linear stability limit is exceeded. A 
detailed discussion of the issues concerning convective and absolute instability is 
presented in the review paper by Huerre & Monkewitz (1990). 

It is known from the experiments of Schubauer & Skramstad (1947) that the first 
stage of the transition process consists of the amplification of two-dimensional waves 
that propagate in the downstream direction. The amplitude growth and propagation 
speed of these disturbance waves depends on the frequency and Reynolds number. The 
development of these waves is well described by linear stability theory (Heisenberg 
1924; Tollmien 1929; Schlichting 1933), which at first was formulated based on a 
temporaf model. Therefore, Schubauer & Skramstad used the phase velocity of the 
disturbance waves to enable comparison of their measurements with the theory. Later, 
however, Gaster (1962) showed that the use of the phase velocity for relating the 
temporal development of the theory with the spatial development of the experiments 
was only approximately correct. Owing to a suggestion by Gaster (1965a, b), the 
stability problem was then reformulated as a spatial one (see, for example, Jordinson 
1970), which then allowed direct comparison of theory with experiments. 

After the two-dimensional disturbance waves (Tollmien-Schlichting waves) reach 
certain amplitude levels, pronounced three-dimensional developments set in, which 
then rapidly lead to breakdown to a random, turbulent motion. Such three- 
dimensional developments had already been observed by Schubauer & Skramstad. In 
subsequent controlled experimental investigations by various researchers, the three- 
dimensional processes were studied in great detail (see, for example, Klebanoff et al. 
1962; Kovasznay, Komoda & Vasudeva 1962; Hama & Nutant 1963; Kachanov & 
Levchenko 1984). 

From such experiments, two basic three-dimensional transition mechanisms were 
identified, namely (a)  the so-called fundamental breakdown, which was first found 
experimentally by Klebanoff et al. (1962), and (b) the subharmonic breakdown, which 
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was first identified by Kachanov, Kovloz & Levchenko (1977).? The onset of the three- 
dimensionality by both the fundamental and subharmonic breakdown was later 
explained by a secondary instability mechanism (see Herbert 1988), where the 
boundary layer flow and a superposed finite amplitude Tollmien-Schlichting wave 
form a new base flow. This new base flow can then be unstable to three-dimensional 
(oblique) disturbances of the same frequency as the fundamental (two-dimensional) 
wave (‘fundamental breakdown’) or of half the frequency of the fundamental (two- 
dimensional) wave (‘ subharmonic breakdown’). Variations of these two basic 
breakdown scenarios can occur when the two- and three-dimensional disturbances are 
‘ detuned ’. 

The secondary instability model describes the onset of three-dimensionality quite 
well. However, owing to the simplifying assumptions in this theory (in particular, that 
the three-dimensional disturbances are small) in order to enable linearization of the 
resulting disturbance equations, the ensuing three-dimensional development cannot be 
captured adequately. Therefore, in the present paper, direct numerical simulations 
(DNS) based on the complete Navier-Stokes equations are employed in an attempt to 
investigate the three-dimensional transition development beyond its onset. In our DNS 
approach, no restricting assumptions are necessary with regard to the base flow and the 
ensuing disturbance flow. In particular, the model employed here is spatial, so that 
both the spatial base flow and the spatial disturbance flow development as observed in 
experiments can be realistically modelled. 

In contrast, past attempts to simulate transition were mostly based on the so-called 
‘temporal’ model (see, for example, Kleiser 1982; Laurien & Kleiser 1989; Wray & 
Hussaini 1984; Spalart & Yang 1987; Zang & Hussaini 1987). Employing either the 
spatial or the temporal model has very different implications for transition simulations. 
In the widely used temporal model, the flow is assumed to be spatially periodic so that 
identical flow conditions (periodicity) can be used at the inflow and outflow boundary 
of an integration domain that contains an integer multiple of the fundamental 
wavelength. Then, the development of the flow, for both the disturbance flow and the 
base flow (which is often kept constant) is temporal, i.e. the disturbances grow or decay 
in time, dependent upon whether the base flow is unstable or stable, respectively. Thus, 
the flow responds much like a ‘closed’ flow system that possesses an absolute instability. 
Because the base flow is then invariant with respect to the downstream coordinate, the 
model cannot account for so-called non-parallel effects. 

When employing the temporal model, exploiting the downstream periodicity allows 
the use of spectral or pseudo-spectral approximations in the downstream direction 
which results in very efficient numerical methods. In addition, with the typically much 
smaller downstream extent of the computational domain compared to the spatial 
model, simulations based on the temporal model are generally less demanding with 
respect to algorithmic efficiency and computer hardware requirements (memory and 
speed). For these reasons, in most transition simulations in the past, the temporal 
model was used. For cases of controlled transition, reasonable agreement was 
achieved, although quantitative comparisons with experimental measurements were 
somewhat ambiguous. The disadvantages of the temporal approach result from the 
underlying assumptions. Therefore, in situations where these assumptions are not 
justified, for example when strong spatial variation of the base flow exists (caused by 
strong pressure gradients, local geometric variations, such as steps, bumps, flow 

t The discussion of an alternative route leading to transition involving oblique waves (cf. Schmidt 
& Henningson 1992) is omitted, since there is no evidence that such a mechanism is relevant for the 
transition scenery of the Kachanov experiments addressed in this paper. 
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separation, etc.), or when the upstream feedback is important, the temporal model 
should not be employed. 

The spatial model, on the other hand, is physically realistic in that it allows both the 
base flow and disturbance flow to develop in the downstream direction, as in the 
laboratory experiments or in practical applications. Thus, in the spatial model, non- 
parallel effects are included, allowing, in particular, interactions between non-parallel 
and nonlinear effects. The response of the flow field (in both the upstream and 
downstream directions) to local disturbance sources can be studied. It is therefore 
applicable for receptivity studies whereas the temporal model really is not. The spatial 
model is particularly well suited for simulations of controlled transition experiments, 
where the transition developments are in fact a consequence of forcing by local 
disturbance sources. 

The disadvantages of the spatial model result from the fact that it is computationally 
much more demanding than the temporal model. Spatial transition simulations are 
therefore relatively scarce in the literature. A successful example is the spatial 
simulation of flat-plate bypass transition by Rai & Moin (1993) using a finite- 
difference scheme on a zonal grid system. Difficulties result largely from the outflow 
boundary conditions, which are difficult to specify and implement, so that unhindered 
passage of the disturbances is possible without adversely effecting the computations 
upstream of the boundary. (For a detailed discussion of the difficulties associated with 
outflow boundary conditions, see Kloker, Konzelmann & Fasel 1993.) In addition, the 
spatial simulations require a much larger downstream extension of the domain, thus 
placing high demands on algorithmic efficiency of the Navier-Stokes method in order 
to be able to carry out such simulations with the supercomputers available today. For 
additional detailed discussions concerning numerical aspects of transition simulations, 
see the recent review by Kleiser & Zang (1991). More recently, a different method based 
on the parabolized stability equations for the investigation of spatially developing 
disturbances was developed by Herbert and Bertolotti. Their results compared 
favourably with existing data (see, e.g. Bertolotti 1991 ; Bertolotti, Herbert & Spalart 
1992), and may be further checked against the results presented in this paper. 

In this paper, we will present and discuss results of direct numerical simulations 
based on the spatial model of the transition experiments of Kachanov et al. (1984). We 
believe that these results will demonstrate that direct numerical simulations based on 
the spatial model can be achieved with a degree of accuracy and reliability not thought 
possible before. 

A somewhat different transition scenario, also resulting from a controlled 
disturbance input where the transition process was initiated by pulse-like disturbances, 
was investigated both theoretically and experimentally by Gaster & Grant (1975). 
These pulse disturbances were introduced into the boundary layer through a small 
circular hole. Thus, in this case, a three-dimensional disturbance development is 
present from the outset and therefore plays an even greater role. This scenario will not 
be discussed here, but will be addressed in a subsequent paper. 

2. Governing equations; boundary and initial conditions 
The numerical model is based on the complete Navier-Stokes equations for 

incompressible three-dimensional unsteady flow. These equations, together with an 
appropriate set of boundary and initial conditions, are solved numerically in a 
computational domain, as shown schematically in figure 1. In the numerical model, all 
variables are used in dimensionless form. The dimensional variables, denoted by a 
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FIGURE 1 .  Schematic representation of the problem: (a) computational domain; (b)  u-velocity 
distribution over blowing and suction strip for generating disturbances. 

tilde, are non-dimensionalized using a reference length 2 and the free-stream velocity 
6=. Then, the non-dimensional variables relate to their corresponding dimensional 
counterparts as follows : 

with the Reynolds number defined as Re = fim z/fi (fi is the kinematic viscosity). 
In the numerical model, the Navier-Stokes equations are used in a vorticity-velocity 

formulation (Fasel 1976) using the three vorticity components and three velocity 
components as dependent variables. With the non-dimensionalization introduced 
above, the non-dimensional vorticity components are given as 

(2) 
1 av abv aw au c ? ~  I a u  w z =  __-_  w = - - -  w =---- 

Reaz ay' ax az' ay Reax '  

Also, in the numerical model employed here, the Navier-Stokes equations are used in 
a 'disturbance formulation'; that is, for the calculation of the disturbed flow field, the 
disturbance variables are used as the dependent variables and not the total variables 
as in a 'total variable formulation'. Towards this end, the total flow field is 
decomposed into a steady two-dimensional base flow (with flow variables denoted by 
subscript B) and an unsteady three-dimensional disturbance flow (with variables 
denoted by a prime). Thus, with capital bold-faced letters denoting vectors, we have 
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It should be noted, however, that this decomposition was not introduced for the sake 
of a later linearization, as in the customary derivation of the linear stability theory 
equations. Rather, it was introduced to facilitate implementation of the boundary 
conditions at the free-stream and outflow boundaries. In the present model, there is no 
linearization and therefore nonlinear effects are considered fully, so that the effects of 
nonlinearity on the disturbance flow or on the steady mean flow are accounted for 
entirely. 

The meanjow (denoted by overbars), in contrast to the basejow, is obtained from 
the time-averaged disturbance flow : 

P =  VB+Vl, n = a,+@, (4) 
with 

The time average is taken over a suitable time period; in the present case, it is over one 
or more integer multiples of the period of the disturbance input. 

For the present investigations, the steady base flow is obtained from numerical 
solution of the Navier-Stokes equations before the calculations of the unsteady flow 
field are initiated. For other situations where exact (or accurate) solutions of the base 
flow are available (such as for plane Poiseuille flow), these solutions could, of course, 
be taken as the base flow directly. However, for a flat-plate boundary layer, as in this 
case, small differences between the Blasius similarity solution and a numerical 
Navier-Stokes solution do exist. In order to avoid any possible ambiguities caused by 
these differences, albeit minor, we are using the Navier-Stokes solution because it adds 
little to the entire cost of the numerical simulations. 

2.1. Calculation of the basejow 
2.1.1. Governing equations 

As mentioned above, in the present investigations, the Navier-Stokes equations are 
used in a vorticity-velocity formulation (see Fasel 1976) with a vorticity transport 
equation for wzB, 

a a 1 a2wZB a2w, 
-((u w )+-(u w )=--+L 
ax z~ ay z~ Re ax2 ay2 ’ 

and a Poisson-type equation for uB, 

Equation (5a)  is in a so-called ‘conservative’ form (conserving vorticity ; see Roache 
1976). Equations ( 5  b) and ( 5  c) are obtained from the definition of vorticity (2) and the 
continuity equation. 

2.1.2. Boundary conditions 
The steady base flow is calculated in the rectangular integration domain ABCD (see 

figure 1 a) using the following boundary conditions. At the inflow boundary (x = x,,), 
we prescribe a Blasius boundary layer flow (denoted by index BI): 

uB(xO, v> = uBZ(Y), uB(xO, Y )  = ’EZ(Y)7 wzB(xg, Y )  = W z B 1 ( Y ) .  (6 a-c) 
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At the wall, we use 

Us(& 0) = 0, V B ( X ,  0) = 0, 25 1 = 0, (7 a-c) 
aY x , o  

while the vorticity is calculated from 

Equation (7 c) is obtained from the continuity equation, while ( 7 d )  results from (5  b). 
At the outflow boundary (x = xN),  we employ 

which then allows solution of the governing equations ( 5 0 )  and (5b) at x = xN, 
whereby uB at x = x N  is calculated from 

In our model, the free-stream boundary ( y  = y M )  is assumed to be far enough away 
from the wall so that the flow can be considered irrotational along this boundary. Thus 
we can assume 

Then the free-stream velocity is prescribed according to a flat-plate boundary layer 
with zero pressure gradient 

For the calculation of vB, a von-Neumann-type gradient condition is used, 

W Z B ( X ’ Y M )  = 0. (9 4 

U , ( X , Y M )  = 1. (9 b) 

which is obtained from the continuity equation. 

2.2. Calculation of the unsteady disturbance flow 
2.2.1. Governing equations 

As for the base flow, the governing equations for the calculation of the disturbance 
flow are based on the Navier-Stokes equations in a vorticity-velocity formulation 
written in a ‘conservative’ form with three vorticity transport equations for the three 
vorticity components w;, w;,  wQ, 

% aW; a a 
at ay a Z  
--+- (v’w; - u’w; + v B  W; - uB w;) -- (u’wL- w’w; + uB w; - u’o Z B  ) = Ao;, (10a) 

awl a a % 

~ + - ( V ’ O ;  - U’W; + vB U; - uB w;) +- (w’o; -v’w:- v B  W; - v ’ w , ~ )  = A w ~ ,  (lob) at ax a2 

% aW; a a 
at ax aY -+-(u‘w: - W‘W; + U B  W: + u’wZB) - - ( w ’ w ~ -  V’W; - v ~ o ~  - V’O, ) = AWL, ( 1 0 ~ )  



218 

and three Poisson-type equations for the velocity components u’, v‘, and w’, 
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a w  a w  aof a w  
ax2 a 2 2  a i  axayy’ 
-+--=-2-- 

a2w’ a2w’ aw; a v  
ax2 ai2 ax ayaz’ 
-+-=--- 

where the Laplacian 5 in (lOa), ( l o b ) ,  ( lOc),  and (loe) is defined as 

2.2.2. Computational domain 
The governing equations (10) are solved within the computational box shown 

schematically in figure 1. For simulations of transition induced by a local disturbance 
source (such as a vibrating-ribbon-induced transition; see Klebanoff et al. 1962 and 
Kachanov et al. 1977), the inflow boundary may be upstream of the wavemaker. Thus, 
the computational domain includes the generation of the disturbance wave. However, 
instead of simulating a vibrating ribbon in our simulations, the disturbances are 
introduced by periodic blowing and suction through the wall within a narrow strip. 
From numerical simulations (Konzelmann, Rist & Fasel 1987) we have learned that 
this technique is very efficient with respect to generating ‘pure’ vorticity waves (without 
excessive acoustic contamination). 

The downstream extent of the computational domain is assumed to be large enough 
so that the main wave front of the propagating disturbance waves does not reach the 
outflow boundary during the course of the computation. In the spanwise direction, the 
disturbance flow field is assumed to be periodic. Therefore, the spanwise extent of the 
domain is composed of one or more wavelengths of the disturbance flow. 

2.2.3. Boundary conditions 

For the boundary conditions at the wall ( y  = 0), we use no-slip conditions, thus 
Equations (1 0) are solved within the computational domain discussed previously. 

u‘(x, o , i ,  t )  = 0,  w’(x, o , z ,  t )  = 0. (1 1 a, b) 

The v’-velocity component is prescribed as a function of x, z ,  and t ,  

v’(x, 0,  2, t )  = f i ( x ,  z ,  t) .  ( 1  1 c) 

This allows the generation of disturbances in the integration domain by local time- 
dependent blowing and suction within a narrow strip at the wall. This blowing and 
suction method is an alternative to the vibrating-ribbon technique in producing 
Tollmien-Schlichting waves (e.g. Kozlov & Levchenko 1987). Kozlov & Levchenko 
have compared both techniques and observed only a slight advantage of the ‘classical’ 
vibrating-ribbon technique over ‘wall techniques ’ when employed in the laboratory. 
However, for numerical simulations, the blowing and suction technique can be 
implemented much more easily ! With a given frequency and spanwise wavelength, 
different kinds of two-dimensional and pairs of three-dimensional oblique Tollmien- 
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Schlichting waves, as well as longitudinal vortices, can be generated. For the 
investigations discussed in this paper, we chose 

(12) fb(x, z, t )  = A,,  Re“2 va(x) sin (Pt) + Re’/’ v,(x) cos (yz ) ,  

where A,D denotes the amplitude and ,8 the frequency of the two-dimensional 
disturbance input. The second term on the right-hand side of (12) generates longitudinal 
vortices and thus is simulating the effects of the pieces of scotch tape under the 
vibrating ribbon in the experiments of Kachanov et al. (1984, 1985). The amplitudes 
of the longitudinal vortices are controlled by the parameter A3D, and the spanwise 
spacing is controlled by the wavenumber y. The distributions of v,(x) and v,(x) in (12) 
used in the present calculations are shown in figure 1 (b). 

The vorticity components are calculated from the following equations : 

and 

wk(x, 0, 2, t )  = 0, (14) 

The outflow boundary is assumed to be downstream of the disturbance wave front. 
The disturbances can thus be assumed to be very small near the boundary and 
therefore follow a linear stability theory behaviour. Hence, at the outflow boundary, 
(10) are solved using 

= - a2f’(x,, y ,  z, t> (16) 

for all disturbance variables f’, where f’ = (u’, v’, w’, oh, wk, wi) .  Equation (16) results 
from the assumption of neutral behaviour of the disturbance waves at this boundary. 
The wavenumber a is an expected wavenumber for the disturbances (near the outflow 
boundary) resulting from the primary instability (see Fasel, Rist & Konzelmann 1991). 

Along the free-stream boundary, as for the base flow, we assume that this boundary 
is far enough from the wall so that potential flow can be assumed. Thus, 

( 1 7 a-c) wj.(x, y,, z, t )  = 0, w;(x, y,, z ,  0 = 0, W X X ,  Y,, z ,  t )  = 0. 

For the v’-component, exponential decay in the y-direction is prescribed, 

where a* is an expected wavenumber dependent on x. 

employed. Thus, for all variables and their derivatives, 
For the spanwise boundaries at z = 0 and z = A,, periodicity conditions are 

are enforced. 
When the disturbances are generated through the blowing and suction strip, as in the 

present investigation, the inflow boundary is moved far enough upstream of the strip 
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so that the effect of the blowing and suction is negligible near the inflow boundary. 
Thus, we assume that all disturbances are zero at the inflow boundary, 

f’(x,, y ,  z ,  t> = 0, (19) 

wheref’ stands for the variables u‘, u’, w’, w:, wk and w:, respectively. 

3. Numerical method 

be introduced for all variables f’ : 
Exploiting the periodicity conditions in the spanwise direction, a spectral ansatz can 

The wavenumber y is related to the spanwise wavelength by y = 2n/h,. The FK are the 
complex conjugates of the Elk and, therefore, governing equations (10) and boundary 
conditions (1 1)-( 19) can be transformed into K+ 1 equations and boundary conditions 
for an (x, y)-plane integration domain. 

Since the disturbance flow development that we intend to calculate is not only 
periodic with respect to the spanwise direction z but is also symmetric with respect to 
z = 0, L-h,/2, L- A,, . . . , etc. the FK for u’, u‘ and w; are all real, while the FK for w’, w: 
and wk are purely imaginary. Therefore, our numerical method does not require any 
complex arithmetic and requires only half the memory of a fully complex 
representation. Except for the first derivatives, all other derivatives with respect to x 
and y in the transformed (plane) equations and in the boundary conditions are 
discretized with finite differences of fourth-order accuracy. The finite-difference 
approximations used to discretize the first and second spatial (x-, y-)  derivatives of the 
flow variables are given in the Appendix. The first derivatives are approximated with 
finite differences of eighth-order accuracy. Test calculations have shown that the use of 
these higher-order approximations for the first derivatives improves the numerical 
stability of the method. We observed that grid-scale oscillations in the x-direction 
occurred before the method failed to converge. These oscillations were avoided either 
by using a smaller step size without changing the order of the discretization or by 
increasing the order of the central differences without changing the step size. In the 
meantime we learned that higher-order central differences (smaller aliasing errors) 
approximate small wavelengths better than lower-order finite differences and that grid- 
scale oscillations are due to an unphysical amplification of not well-resolved wave 
components (caused by the time integration scheme). Similar observations most 
probably led to the use of upwind-biased differences by Rai & Moin (1991, 1993). 

For time integration of the vorticity transport equations (1Oa-c), an explicit 
Adams-Bashforth procedure of third-order accuracy is employed, 

At 
12 

Or’  = + - (23RL-’ - 16RL? + 5Rk3), 

where O, denotes O,,, O,, and O,,; rt, denotes the right-hand sides of the discretized 
vorticity transport equations; and 1 denotes the time level. The present numerical 
method represents a significant improvement over our previous method with respect to 
computational efficiency. With our new method, comparable simulations require only 
one-tenth the computation time of our previous implicit method (Fasel et al. 1990). The 
reason for this considerable reduction in computation time is twofold. First, the 
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explicit Navier-Stokes method allows considerably better adaptation to and 
exploitation of the vector architecture of the CRAY-2 supercomputer used for these 
simulations. Secondly, the explicit third-order-accurate Adams-Bashforth method has 
relatively good numerical stability characteristics, so in order to assure numerical 
stability, the time step At in our present simulation needed to be reduced only to one- 
sixth of the At used in the implicit calculations. For details concerning the numerical 
method, see Rist (1990). 

4. Numerical results 
Based on the numerical method discussed above, a computer code was developed to 

solve the governing equations together with the boundary and initial conditions as 
specified in the previous section. However, before employing this code for the 
investigation of complicated nonlinear transition phenomena, such as the fundamental 
breakdown which is considered in this paper, numerous test calculations were 
performed to check the validity of the code for transition simulations. 

4.1. Code validation 
We performed test calculations with very small two- and three-dimensional disturbance 
waves. This allowed detailed comparison with linear stability theory and thus enabled 
a thorough check of the performance of the computer code and the numerical method 
upon which the computer code is based. Of the many linear test calculations 
performed, owing to lack of space here we will only present the results of two typical 
calculations. 

In addition to small-amplitude calculations, the code was also subjected to more 
complex situations, where the effect of nonlinearities became important. For example, 
we performed comparison calculations using the experiments of Kachanov & 
Levchenko (1984) for a subharmonic breakdown. Subharmonic breakdown can be 
captured accurately by secondary instability theory and, therefore, the numerical 
method could be scrutinized by using both experimental measurements and theoretical 
results for comparison with the numerical results. 

4.1.1. Linear test calculations 
Results of linear test calculations are given here for a two-dimensional case y = 0 

and a three-dimensional case with y = 20. The amplitude for the two-dimensional case 
was A,, = and the frequency was 
,8 = 10 (which corresponds to F = (2n)$(C/33 x lo4 = 1.0). The three-dimensional 
disturbances are generated analogously to the two-dimensional disturbances by 
timewise periodic suction and blowing, i.e. A,, Re’” U J X )  sin (pf) cos ( y z )  instead of 
A,, v,(x) cos (yz) as in equation (12). Typical results of these linear calculations 
are shown in figures 2 and 3 and are compared with linear stability theory. In figure 
2, for these two cases, the amplification rates of the Navier-Stokes calculations as 
obtained for the maxima of the u’, v’, and w‘ disturbance profiles are compared with 
the amplification rates obtained from linear theory (in figure 2, please note the location 
of the disturbance strip ; also, for clarity, the three-dimensional amplitude waves are 
shifted in the y-direction relative to the two-dimensional amplification waves). For the 
ukaz criterion, the curves agree very well with those of linear stability theory. The 
observed deviations, in particular for the vkaz and wkuz criteria, are well within the 
differences that can be accounted for by the so-called ‘ non-parallel ’ effects (see Gaster 
1974 and Fasel & Konzelmann 1990). Comparison of the amplitude distributions for 

and for the three-dimensional case A,, = 
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1.5 2.0 2.5 
X 

FIGURE 2 .  Comparison of amplification rates of the Navier-Stokes calculations with linear 
stability theory for two-dimensional (y = 0) and three-dimensional waves (y = 20). 
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FIGURE 3. Comparison of the amplitude distributions of the Navier-Stokes calculations with 
linear stability theory. x = 2.0, /3 = 10, y = 20. 

the three-dimensional calculations (‘eigenfunctions ’) is shown in figure 3. The 
agreement is so good that the corresponding curves practically coincide with each 
other. 

4.1.2. Subharmonic breakdown 
To check the suitability of the numerical code for investigating nonlinear transition 

phenomena, test calculations were performed for a subharmonic breakdown. Detailed 
experimental data for this case, which can be used for comparison with our 
Navier-Stokes results, are available from the laboratory experiments by Kachanov & 
Levchenko (1 984). Therefore, for this test calculation, the parameters were chosen so 
that the conditions in the experiments were matched as closely as possible. The results 
of the Navier-Stokes calculations agreed extremely well with the experiments. In 
general, the quantitative agreement between numerical results and experiments was at 
least as good or even better than that achieved with our previous Navier-Stokes code 
(see Fasel et al. 1990). 
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FIGURE 4. Position of the computational domain: (a) relative to the experiments by Kachanov 
et al. (1984, 1985); (b) relative to the stability diagram of linear stability theory. 

The numerical method presented in this paper could still be improved in a number 
of ways, e.g. by the use of a different outflow boundary treatment (cf. Kloker et al. 
1993) which in turn would allow the use of more spanwise Fourier modes, and hence 
better resolution in z.  However, the present simulations with a relatively coarse grid are 
interesting in many ways. Our results show that only few spanwise modes are necessary 
to compute the essential physics. This observation may have implications for future 
large eddy and direct numerical simulations of transition to turbulence. 

4.2. Numerical simulations of the fundamental breakdown experiments by 
Kachanov et al. (1984, 1985) 

Kachanov et al. (1984) intended to repeat the experiments of Klebanoff et al. (1962) in 
order to better understand the three-dimensional transition phenomena and to reveal 
the relevant mechanisms for this type of breakdown, which was later classified as 
‘fundamental breakdown’ (or K-type breakdown). For our numerical simulations, all 
parameters were chosen such that the set-up of the experimental investigations of 
Kachanov et al. (1984) could be modelled as closely as possible. In figure 4, the 
computational domain for these simulations is shown in the laboratory frame of 
reference of the experiments by Kachanov et al. 

Figure 4 also shows the location of the vibrating ribbon (2 = 250 mm), as well as the 
approximate locations where the characteristic ‘ spikes’? occurred. As also indicated in 
figure 4, the measurements in the experiments were taken between 2 = 300 and 
650 mm. The free-stream velocity was 0, = 9.18 m s-l and the frequency of the 

t This term describes short-time, large-amplitude changes of the u’-velocity signals us .  time, first 
observed in experiments by Klebanoff et al. (1962). 
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vibrating ribbon was p" = 96.4Hz. For our calculations, the inflow boundary was 
located at 1, x 190 mm and the outflow boundary was moved downstream (as 
discussed in $3) until KN x 1050 mm was reached. The Reynolds number used in 
equations(l)-(17)wasRe* = 100000, with v" = 1.51 x lo6 m2 s-l (kinematicviscosityof 
air). This leads to a reference length L" = 165 mm. Thus the Reynolds number based on 
displacement thickness, defined as Re* = 1.72078(x Re)liz for the inflow boundary, is 
Re* = 580 and for the final location of the outflow boundary Re* = 1375. In the y-  
direction, the computational domain extends for 8 (inflow) displacement thicknesses. 

Test calculations have shown that 8 displacement thicknesses are sufficient. For 
example, a calculation with 12 displacement thicknesses showed practically no 
differences in the results up to K = 450 mm (Rist 1990). The validity of the far-field 
boundary condition may also be checked by comparison of the numerical results with 
the experimental measurements. In a simulation of the later stages, however, when 
vorticity fluctuations (especially at peak) reach the upper boundary, the boundary is 
too close to the wall with only 8 displacement thicknesses distance. This can be 
observed in the results further down, but as it appears at an x-station downstream from 
the station where the spanwise resolution is insufficient, and as the comparisons with 
the experiments show no upstream influence, the results are not affected by the far-field 
boundary. 

In the simulations, the disturbance input was at approximately the same downstream 
location as in the experiments. However, instead of simulating the disturbance 
generation by a vibrating ribbon, the disturbances in the simulations were generated by 
blowing and suction within a narrow strip as discussed in $2.2.3. With the reference 
velocity - -  0, - and the reference length L", the dimensionless frequency given by 
p = (2.n) pL/ Urn was p x 1 1, and the dimensionless frequency parameter 
F = (P/Re) x lo4 = 1.1. In the experiments of Kachanov et al., the three-dimen- 
sionality of the disturbances was introduced by using strips of scotch tape that were 
glued onto the fiat plate directly under the vibrating ribbon. The distance of these 
spacers was 12.5 mm and therefore the spanwise wavelength was 25 mm. This results 
in a non-dimensional spanwise wavenumber y = = 41.5. The streamwise wave- 
number, a, required for the outflow conditions (16) was obtained from linear theory 
and, thus, a = 30 was used. The wavenumber a* required in equation (17d) for each 
spanwise harmonic was calculated from the relation = a2+(ky)'. The number of 
spanwise Fourier modes was set to 17 (i.e. K = 8 in (20)) for the solution of the 
governing equations, and to 32 for the alias-free computation of the nonlinear terms 
in (10). 

For the present simulations, the base flow was calculated using 65 grid points in the 
y-direction and 3000 grid points in the x-direction. As discussed below, the downstream 
extent of the computational domain for the calculation of the disturbance flow 
increases during the course of the actual simulations as the outflow boundary is moved 
downstream in order to stay clear of the leading edge of the disturbance's wave front. 
Therefore, the number of grid points used in the x-direction was N = 658 at the 
beginning of the unsteady calculation. N was increased by 184 at the beginning of each 
new disturbance cycle. Thus, 2498 grid points in the x-direction were used when the 
simulation was stopped after 11 disturbance cycles. 

The time direction was discretized such that one period of the fundamental 
disturbance cycle was initially divided into 1200 intervals, At .  This was determined 
from stability considerations to ensure numerical stability of the explicit Adams- 
Bashforth time integration scheme as discussed in $3. Also for stability reasons, after 
seven disturbance cycles, the number of time intervals per period had to be increased 
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FIGURE 5. Instantaneous u-velocity component at z = 0 and j = 0.95 mm for 
four different time instants. 

from 1200 to 1680 because the maximum instantaneous velocity increases due to the 
influence of the nonlinear disturbances and therefore the initially satisfied CFL 
criterion is violated unless the time step is reduced. There is actually no danger in 
calculating with a too big time step, and thus producing spurious results, since the 
simulation will ‘blow up’ within a few time steps when the CFL criterion is violated. 
The simulation was carried out using the CRAY-2 supercomputer at the University of 
Stuttgart and required approximately 46 h of CPU time and 96 megawords of memory. 
During the simulation, up to 14.7 gigawords of numerical data per primary disturbance 
cycle had to be calculated. For the results presented here, only 1 gigabyte of data for 
the eleventh calculated time period could be stored on disk and then used as a database 
for detailed comparisons with the experiments. 

A typical response of the flow field subjected to the periodic disturbance input at the 
blowing and suction strip is shown in figure 5.  For three different time instants, the 
instantaneous streamwise velocity component u for a constant y” = 0.95 mm (which is 
close to the u’-maximum of the two-dimensional Tollmien-Schlichting wave) and z = 0 
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is plotted versus x. As the disturbance waves travel downstream, they assume an 
increasingly nonlinear character until at some downstream location, 1 > 430 mm, the 
first signs of randomness appear, which is about the location where spikes were 
observed in the experiments. Also indicated in figure 5 is the instantaneous location of 
the outflow boundary, which, as discussed earlier, is moving downstream as the 
calculation progresses. Beyond X = 450 mm, the flow is no longer periodic in time but 
rather exhibits a ‘chaotic’ or ‘turbulent’ behaviour. Of course, the number of grid 
points in the calculation is not sufficient to adequately resolve this ‘turbulent’ motion 
(although we believe it is sufficient to resolve the motion of the most energetic eddies 
and therefore the motion in this turbulent region qualitatively resembles that of a low 
Reynolds number turbulent boundary layer). However, the numerical resolution is 
sufficient to realistically model the early and intermediate transition stages up to the 
development of the spike stages which, as observed in experiments, just precede the 
actual breakdown to the random motion. In the regime of interest, i.e. upstream of the 
spike stages, the flow field is still periodic in time owing to the periodic disturbance 
generation. This allows detailed analysis of the data (using, for example, Fourier 
decomposition of the flow field) and enables detailed comparison with the experimental 
data. This periodicity of the time signals can be observed in figure 6, where the u’- 
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disturbance is plotted versus t at the peak station z = 0 and at a constant distance y 
from the wall. This is the distance from the wall where the spike in the time signal 
shows up strongest, which is clearly seen for I = 430 mm. 

Figures 7 and 8 show direct comparisons between simulation and experiment for 
various Fourier components. The Fourier amplitudes of the Navier-Stokes solution 
and the corresponding phase relations for various wave components of the u 
disturbance velocity at the peak station are plotted in figure 7, together with 
corresponding experimental data. These amplitude and phase distributions are 
presented for various downstream x-locations starting from X = 300 mm up to 
2 = 430 mm. The amplitude distributions of the various wave components from the 
Navier-Stokes calculations agree quite well with those from the experiments. Even for 
our last measuring station, X = 430 mm (figure 7 4 ,  there is still a good qualitative, 
and to some degree quantitative, agreement between simulation and experiment, 
although the resolution in the simulation can no longer be considered adequate. 
Moreover, even the comparison of the phase distribution between simulation and 
experiment shows good agreement, considering the difficulties in reliably determining 
phases from the experimental data (Kachanov et al. 1984, 1985). In particular, the 
numerical phase distribution also exhibits the characteristic phase synchronization for 
2 = 400 mm (figure 7c) at between approximately 2 mm and 3 mrn from the wall. 
Kachanov et al. identified this synchronization as being characteristic for the 
development of the spikes. Indeed, spikes in the time signals of the calculation do occur 
shortly downstream of this station, between 400 mm and 430 mm, and at a y-location 
above 2 mm, as seen in figure 6. This phase behaviour is even more pronounced in 
figure 7(d) for 2 = 430 mm, where the location of the synchronization has moved 
farther away from the wall to approximately 3.5 mm. At approximately this location 
in the experimental measurements, the velocity signal showed a spike that was also 
observed in our numerical simulation (figure 6). 

Thus, our numerical simulations support the experimental observations that the 
occurrence of spikes is clearly associated with a phase synchronization of all wave 
components in a narrow y-range. Our results therefore lend support to the conjecture 
put forth by Kachanov et al. that the spike development should not be seen as a sudden 
‘new’ event in the successive transition development, but rather that it is a consequence 
of the downstream development of the various wave components and their nonlinear 
interactions with each other. In other words, the sudden spike development should not 
be seen as an event decoupled from the upstream region; on the contrary, the 
contribution of the wave components to the spike generation may be traced upstream 
and therefore the spike development can be viewed as a predictable event. 

The spanwise variation of the Fourier amplitudes of the various velocity wave 
components for a constant distance from the wall together with their respective phase 
relations are shown in figure 8 for different downstream locations. As seen from figure 
8(a) ,  for the first measuring station, X = 300 mm, there are still qualitative deviations 
between the simulation and experiments, in particular for the phases. This is likely to 
be due to the difficulty in our numerical simulations of exactly modelling the wave 
generation of the experiments. Therefore, the ‘ transient ’ downstream development in 
the vicinity of the location of the wave generation will be somewhat different in the 
numerical simulation unless the wave generation of the experiments can be modelled 
exactly. Based on the differences in the mean flow variation of u (Fourier component) 
between experiment and simulation, it appears that there is a much stronger spanwise 
modulation in the experimental measurements than in the simulation. This suggests 
that the tape strips glued onto the plate in the experiments may have led to a 
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FIGURE 7. Comparison of amplitude and phase distributions at the peak station of the Navier-Stokes 
simulations (lines) with measurements by Kachanov et al. (1984, 1985) (symbols) for various 
downstream locations: (a)  I = 300 mm; (6)  I = 350 mm; (c) 2 = 400 mm; (d)  2 = 430 mm. F1, F2, 
etc. denote the frequencies of the fundamental wave, and its higher harmonics, respectively. 

locally stronger mean flow variation than we had introduced with our disturbance 
generation according to equation (12). However, for the next measuring station, 
X = 350 mm in figure 8(6), the numerical and experimental mean flow variations are 
in better quantitative agreement, suggesting that the effect of different local ‘transient’ 
behaviours due to the difference in disturbance generation in the experiments and in the 
simulations has subsided. Nevertheless, certain consistent quantitative differences 
between experiments and simulations do persist and they may well be a consequence 
of these different disturbance generations. However, in the light of the otherwise 
excellent agreement of the amplitude distributions and phases, as discussed in 
connection with figure 7, this possible difference in the disturbance generation does not 
essentially alter the underlying physical mechanisms of the subsequent nonlinear 
behaviour. Also, it should be noted that the relatively small deviations between 
experimental and numerical data may also be due to experimental measuring 
uncertainties and other difficulties of performing such difficult experiments (see 
Kachanov et al. 1984). 

For K = 400 and 430 mm in figures 8( c) and 8 (d ) ,  the simulations nicely capture the 
strong spanwise modulation of the wave components. For X = 430 mm (figure 8 d ) ,  the 
action is essentially concentrated within a very narrow spanwise range at the spike 
location where, as seen in figure 7 ( d ) ,  amplitudes can reach values of more than 16% 
of the mean flow! The large difference between the total r.m.s.-signal and the 
fundamental near the peak station is indicative of the large contribution of the higher 
harmonics to the spike, as initially observed by Kachanov et al. (1984). 

It is obvious from figures 7 and 8 that additional wave components, other than the 
fundamental disturbances introduced at the disturbance strip, are present. These 
additional components must be generated locally as no other additional disturbances 
were introduced into the calculations. Thus, these additional components must be 
generated by the nonlinear terms in the Navier-Stokes equations, which enable 
nonlinear interactions of the two- and three-dimensional wave components. An 
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excellent overall impression of the rapid generation of these additional wave 
components as the downstream distance increases can be obtained from figures 9 and 
10. In figure 9, for the u-velocity disturbances, the Fourier amplitudes, ah,k,  of the 
various spanwise and streamwise wave components are plotted in a perspective 
representation, where h denotes the multiple of the fundamental frequency and k 
denotes spanwise wave components according to 

H K  

u'(x? y? ' 9  t> = c ah,  k ( x ,  y )  cos [ ( h p O  + kyz)  - @ h ,  k(x, y )] -  (22) 

Figure 9(a), for X = 247.5 mm, which is near the end of the disturbance strip, 
demonstrates that, as intended, we are generating mainly a two-dimensional 
fundamental wave component (1,O) and, in addition, we introduce a very small 
spanwise periodic variation of the base flow in order to model the effect of the spacers 
used in the experiment. The two-dimensional disturbance amplitude is already large 
enough so that a small but recognizable two-dimensional first harmonic is generated, 
(2,O). At the next station, X = 289 mm, which is close to the first measuring station, the 
two-dimensional first harmonic has grown considerably relative to the fundamental 
(1 ,O)  component, and a small two-dimensional second harmonic (3,O) appears. 
However, owing to the interaction of the two-dimensional fundamental component 
(1,O) with the three-dimensional stationary mode (0, l), the longitudinal vortices, 
three-dimensional fundamental components (1, l), (1, - l), are created. Initially, the 
effect of nonlinear interactions appears to be such that both spanwise (three- 
dimensional) and two-dimensional wave components are created with about equal 
priority (maybe with, at first, a slight bias towards generating two-dimensional 
components). Beyond 1 = 330 mm (see figure 9c),  it is apparent, however, that 
spanwise components are generated at a much more rapid rate than two-dimensional 
components. This can be seen from the fact that the amplitude spectra in figure 9 are 
spreading much more rapidly in the k-direction than in the h-direction. Comparing the 
spectra for two consecutive downstream stations, it is obvious that this process is 
rapidly accelerating. This is particularly apparent when comparing X = 37 1 mm, which 
is still upstream of the first spike stage, and figure 9(e) for X = 412.5 mm, which is at 
about the first spike stage. With increasing spanwise wavenumber and frequency the 
amplitudes of the modes decrease. One exception is at the last station, 2 = 413 mm (in 
figure 9e), where the amplitudes increase again at the spanwise boundary of the 
spectrum (compare curves k = 7 and k = 8 ) .  This increase is due to an insufficient 
number of Fourier modes in equation (20), but not due to aliasing since the 
computation of the nonlinear terms has been de-aliased by the 2/3-rule. 

The rapid downstream growth of the spanwise wave components is even better 
displayed in figure 10 where Fourier amplitudes of the various spanwise spectral 
components for the fundamental frequency (1, k)  are plotted versus the downstream 
coordinate x. For comparison, the three-dimensional steady mode (0,l) and the mean- 
flow distortion relative to the base flow [mode (O,O)] are also shown. In particular, 
figure 10 also shows clearly that the higher k modes enter at an increasingly faster rate 
as x increases and the growth rate of the next k mode is initially larger than the 

h=O k=-K 

FIGURE 8. Amplitudes and phases versus i = yz /n  for a constant distance from the wall and for 
various downstream locations: (a) 2 = 300 mm, j = 0.97 mm; (6) 2 = 350 mm, j = 0.96 mm; (c)  
2 = 400 mm, y" = 0.96 mm; ( d )  2 = 430 mm, 9 = 3.47 mm (experiment: j = 4.5 mm). Lines are 
results from calculations; symbols are measurements from Kachanov et al. (1984, 1985). F1, F2, etc. 
denote the frequencies of the fundamental wave, and its higher harmonics, respectively. 
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FIGURE 10. Development of the y-maxima of the Fourier amplitudes in the 
downstream direction of selected modes of figure 9. 

preceding k -  1 mode. Also, all the modes appear to saturate beyond 1 = 420 mm, 
where they reach the same order of magnitude in amplitude. One exception is the 
highest spanwise mode, k = 8, which has already started to increase above (1,7) at 
2 = 400 mm. It is important to note that a simultaneous increase of other modes (e.g. 
(1,6) and (1,7)) does not occur; they are apparently not strongly affected by the 
increase of the eighth spanwise mode. This may explain why the present results 
compare so well with the experiment downstream of K = 400 mm. 

The rapid spreading of the spanwise wavenumber spectrum is consistent with the 
findings of Klebanoff et al. (1962), who suggested that the three-dimensional 
development strongly dominated the two-dimensional development after the two- 
dimensional waves had reached a certain amplitude and that therefore the three- 
dimensional development was crucial to the breakdown process. This strong 
three-dimensional behaviour in a sense motivated Klebanoff et al. to trigger the 
three-dimensional development by introducing controlled three-dimensional wave com- 
ponents using spacers under the vibrating ribbon. However, based on the results of our 
simulation, we conjecture that compared to Kachanov et al.’s experiment, the two- 
dimensional wave amplitude was initially only half as large as in the Kachanov et al. 
experiments. This may be due to the different experimental conditions at the location 
of the vibrating ribbon (local Reynolds number, amplitude, and frequency) in 
generating the two- and three-dimensional waves. In the experiments by Klebanoff et 
al., the three-dimensional components were thus larger relative to the two-dimensional 
components right from the outset of the disturbance generation than in the experiments 
by Kachanov et al. This is consistent with Klebanoff et al.’s statements that in their 
experiments two-dimensional wave development was negligible and that higher 
harmonics of the two-dimensional wave components were unimportant. Kachanov 
et al., on the other hand, observed and measured sizable two-dimensional higher 
harmonic wave components and therefore disagreed with Klebanoff et al. and stated 
that two-dimensional higher harmonics do play an important role in the breakdown 
process. Our calculations support the measurements of Kachanov et al. ; in fact, we 
also observed significant higher-harmonic two-dimensional wave components (see 
figure 9a-e). However, we disagree with Kachanov’s (1987) interpretation that 
Klebanoff et al. underestimated the role of the higher harmonics. As mentioned earlier, 
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in our opinion the discrepancy is probably due to differences in the disturbance 
generation, in particular with respect to the (relative) amplitudes of the two- and three- 
dimensional wave components. In spite of the differences in the disturbance generation, 
it appears however that the fundamental mechanisms responsible for the three- 
dimensional breakdown are very similar for both experiments. 

In the light of the results discussed so far, in particular the close agreement with the 
experiments, we feel confident that with our numerical model we can reliably simulate 
the transition process in the experiments by Kachanov et al. (1984, 1985). It should be 
mentioned that in contrast to earlier simulations (using the temporal model) our 
simulation results show the true spatial development of the disturbances, and are hence 
qualitatively and quantitatively much closer to the experiment. In particular, there is 
no ambiguity regarding the velocity needed for the transformation of temporal results 
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FIGURE 11. Instantaneous isolines for the spanwise vorticity component w, at planes z = const. for 
several time instants during a Tollmien-Schlichting period: (a) peak plane, z = 0; (b) valley plane, 
i = 12.5 mm. 

into spatial results. Therefore, we feel we can use our simulations to extract 
information from the numerical data that cannot (or only under considerable 
difficulties) be obtained from the experimental data. From our simulations, we have 
available instantaneous data using an extremely fine spatial and temporal mesh. Also, 
the data are 'clean', that is they are uncontaminated by the effects of intrusive probes 
or of free-stream turbulence or other influencing factors in the experiments. 

Of great interest, for example, is an investigation of the development and behaviour 
of dominant vortical structures and an understanding of their importance in the 
transition process. Also of immediate interest would be the question of whether the 
dominant structures in the transition process ci la Kachanov et al. (1985) are similar to 
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those in the experiments of Williams, Fasel & Hama (1984) who made an attempt to 
identify structures and interpret their role in the transition process. 

The dynamics of the flow field during the transition process are nicely demonstrated 
in figure 11, where contours of the instantaneous vorticity component w, are plotted 
for five representative time instances during one period of the fundamental 
Tollmien-Schlichting wave. The plots represent only part of the entire integration 
domain. In figure 11 (a), which is for a spanwise peak location ( z  = 0), we can observe 
the development of a localized maximum of w, vorticity (high-shear layer) which, while 
propagating downstream and moving away from the wall, becomes significantly 
deformed. Later, this vorticity concentration breaks up violently into smaller distinct 
vorticity lumps (we can clearly identify four), which are accelerating away from the 
wall. The spikes observed in the time velocity signals of the u’-component are directly 
linked to the birth of these small but obviously highly energetic vortices, as already 
shown by Kovasznay et al. (1962). Associated with (or caused by) this breakup of the 
vortical w, structure are concentrations of very high w, very close to the wall. In a movie 
that we produced from the simulation data, we could observe that every other vorticity 
lump that is generated in the breakdown of the high-shear layer moves towards the wall, 
where it merges with the region of high wall shear, while the other vorticity lumps 
generated by this breakup propagate away from the wall. In contrast, for the spanwise 
valley stations (figure I1 b), such localized w, concentrations away from the wall do not 
develop. Rather, we can observe the generation of large w, concentrations very close 
to the wall as for the peak stations (but farther downstream than where the breakup 
occurs in the peak station). 

An overall impression of the shape of the vortical structures involved in the three- 
dimensional development prior to breakdown can be obtained from figure 12. In this 
figure, surfaces of constant spanwise (total) vorticity w, and constant longitudinal 
(total) vorticity w, are shown in perspective representation for two time instants, 
r = 1OT and 10.4T. The structures in figure 12 may be compared qualitatively (e.g. 
Biringen 1987; Krist & Zang 1987). However, in contrast to the temporal simulation, 
here successive structures in the downstream direction are spatially apart, i.e. they do 
not overlap. This is an important qualitative difference to temporal simulations. It 
should be noted that the small-spanwise-scale longitudinal structures at t = 10.4T are 
a consequence of spanwise grid-scale oscillations that are due to the overshoot of 
modes k = 8 at .f > 400 mm, which were already observed in figures 9 and 10. The grid- 
scale oscillations are directly linked to the occurrence of large z-gradients near z = 0 
and they move downstream with the flow structures to which they adhere. Thus, for 
constant x they repeatedly appear and disappear and there is no indication to suggest 
that the results become wrong with the first appearance of these oscillations. Rather, 
the main (physical) structures are still correct, at least qualitatively. The surfaces of 
constant w, (which is essentially au/dy, as dv/ilx contributes only very little to w,) 
develop tongue-like structures (see figure 12 for t = lOT), which become more and 
more elongated as they propagate downstream (compare the first and second 
structure, figure 12a, t = 10T). After forming pointed tips, the front (leading) part of 
the w, structures becomes wavy while getting strongly stretched in the downstream 
direction (figure 12, t = 10.4T). The shapes of these structures qualitatively agree 
with those identified experimentally by Williams et al. (1984), who mapped surfaces of 
constant au/dy, which supports other findings that the &/ax component does not 
significantly contribute towards w,. The shape of the w, structures differs from the 
characteristic A-shape that was observed in flow visualization experiments (see Hama 
& Nutant 1963; Williams et al. 1984). 
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t=10.4T 

FIGURE 12. Three-dimensional structures identified by surfaces of constant instantaneous w, and w, 
for two time instants, t = 10T and t = 10.4T: (a) w, = 0.2; (b) Iw,J = 0.05. The Iw,J belonging to a 
A-vortex is marked. 

The surfaces of constant Iw,I in figure 12, however, identify A-shaped structures. 
These A-structures become more and more elongated as they propagate downstream. 
Later (for t = 10.4T), the tip of the A-structure lifts up and moves away from the wall 
while being severely stretched. Of course, the very tip of the vortex cannot be identified 
by w, = constant. This change of position of the A-structure relative to the wall can be 
observed much better in figure 13. Here, contours of constant w, are plotted in the 
( y ,  z)-plane for several downstream stations. Together with the contours, the 
projections of the instantaneous velocity vectors onto the ( y ,  z)-plane are also shown 
for half the cross-section. This instantaneous velocity vector field is shown because in 
the literature it is often conjectured that the instantaneous velocity field associated with 
the later three-dimensional transition development could be simply thought of as being 
induced by the A-vortex. 

The contours of w, = constant in figure 13(a) (for t = 1UT) represent cuts through 
the second vortex of figure 12(b), where the shaded areas mark the A-vortex as 
identified in figure 12(b) for Iw,I = 0.05. Thus, at the first x-station, 2 = 388 mm, we 
cut through the ‘legs’ of the vortex; at 1 = 399 mm, we are approximately at the 
middle of the vortex; at 1 = 405 mm, we are closer to the tip; and, at the last station, 
1 = 410 mm, we are practically within or already ahead of the tip since w, is very small 
here. It is very striking how the A-vortex, as identified by the contours of the 
w, = constant (shaded) region, changes its shape and orientation from the leg region 
(1 = 388 mm) to the tip region. At the leg, the shape is flat with an orientation almost 
parallel to the wall. Moving towards the tip, the shape changes and becomes oriented 
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more and more vertically while moving away from the wall.? In addition to the 
primary w, contours due to the A-structure, figure 13(a) also shows contours of 
secondary vortical structures above and below the primary structures ; these structures 
depict regions of large spanwise shear aw/ay above and below the primary structures. 
Based on experimental measurements, Williams et al. (1984) suggested that such 
secondary vortical structures exist, but because of their vicinity to the wall, they were 
difficult to map out quantitatively. Thus, our simulations clearly support the existence 
of secondary vortical structures (shear layers) that are directly linked to the primary 

Figure 13, where two periods in the spanwise direction are shown, does not represent the correct 
aspect ratio of the flow structures. Since the figure covers about 50 mm in the %direction and over 
4 mm in the j-direction, the j-coordinate is stretched by a factor of approximately 4. 
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FIGURE 13. Instantaneous velocity field (velocity vectors) and longitudinal vorticity w, in planes 
x = const. for different downstream locations and times: (a) 388 mm < 1 < 410 mm, t = 1OT 
(Tollmien-Schlichting period); (b) 410 mm < 1 < 434 mm, r = 10.4T. The approximate extent of the 
A-vortex is shaded. 

structures. It should be noted that the main contribution to w, is from aw/ay while 
the au/az contribution is only minor, analogous to the fact that au/ax contributes little 
to w,. 

Figure 13 shows the effect of insufficient spanwise spectral resolution : grid-scale 
oscillations with the wavelength of the highest Fourier mode (k  = 8, i.e. hJ8) at 
x = 405 mm in figure 13(a), and throughout figure 13(b) (similar plots are available 
from the (temporal) simulations of Krist & Zang 1987). These oscillations appear to 
be superimposed on large-amplitude structures which can be thought of being 
represented by the superposition of spanwise Fourier modes with larger wavelengths. 
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FIGURE 14. Comparison of instantaneous isolines of spanwise wz (solid lines) and normal velocity 
component u (dashed lines) at  the peak station ( z  = 0): (a) I = 10T; (b) t = 10.4T. Local maxima and 
minima of u are indicated by @ and 0, respectively. 

This observation is again consistent with figure 10 where beyond X = 400 mm the 
highest k-modes reached larger amplitudes than the smaller ones without strongly 
affecting them. 

The development of the w, contours for the same A-structure at a later time than in 
figure 13 (a) (and somewhat farther downstream) is demonstrated in figure 13 (b). 
Comparison with figure 13 (a) shows that the structure is considerably more elongated, 
the cross-sections are farther from the wall, and the orientation in the tip region is 
considerably more vertical. In addition, the intensities are higher, which can be 
explained by the stretching in the x-direction. Moreover, in the tip region, secondary 
vortices and shear layers of high intensity are created below the primary structure and, 
in particular, right at the wall. The instantaneous velocity vector fields shown together 
with the w, contours in figure 13 do not unequivocally support the notion that the 
instantaneous velocity field is a consequence of the induction mechanism of the A- 
vortex (because of the discrepancy between velocity vector field and vorticity isolines). 
This finding is consistent with the fact that secondary vortex structures exist that, of 
course, will also contribute to the induction mechanism. 

On the other hand, we discovered that the behaviour of the high-shear structure in 
the peak plane appears to be surprisingly consistent with the instantaneous velocity 
field. For example, in figure 14, the high-shear structure as identified by w, > 0.4 in the 
peak plane is shown together with contours of the instantaneous normal velocity 
component u. As observed in figure 14(a) for t = lOT, there is a local maximum of u 
directly under the forward part of the layer, which would push the structure towards 
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FIGURE 15. Timelines generated by ‘marking’ wire placed at constant x and y for two time instants, 
t = 10Tand t = 10.4T: (a) perspective view; (6) side view (in the negative z-direction). Shaded area 
corresponds to the projection of the shaded isosurfaces Iw,J = const. from figure 12(b). 

the free stream and away from the wall. Above the structure and ahead of the tip, there 
is a local minimum of u (maximum of negative u-velocity) that tends to push the front 
of the shear-layer structures towards the wall. Thus the combined action of the v- 
velocity distribution results in a motion of the structure away from the wall (because 
the positive maximum below is much stronger than the negative maximum above) and 
a deformation (bending) of the structure. Even the later development of the shear-layer 
structure at t = 10.4T in figure 14(b) (namely, the complicated change of shape 
(warping) and the continued uplift) is entirely consistent with the instantaneous v- 
velocity distribution. Thus, the shear-layer structure in the peak plane is moved and 
deformed by the instantaneous velocity field like an inertialess entity. 

Experimentally, the dominant structures in the transition process are typically 
identified by flow visualization using hydrogen bubbles or dye. Considering that the 
interpretation of flow visualizatioq can lead to erroneous results (see, for example, 
Hama 1962 and Cimbala, Nagib & Roshko 1988), the question arises as to how the 



242 t'. Rist and H .  Fasel 

structures identified by flow visualization relate to the structures that we have identified 
from our numerical simulations. To answer this question, we have numerically 
generated flow visualizations using the data obtained from the simulations. For this, 
massless marker particles are released in the flow field and their instantaneous position 
is then determined by the instantaneous velocity field. Figure 15, for example, shows 
' timelines' that were generated by releasing particles along a line x = constant and 
y = constant (particles are released periodically in time), where 2 = 300 mm and y 
corresponds to the location of the critical layer. The timelines at the earlier time instant 
in figure 15(a) for t = 10T at  first show simply a warping of the Tollmien-Schlichting 
waves. Farther downstream (the second structure for t = lOT), the timelines clearly 
identify a A-structure. At the later time (figure 15a for t = 10.4T) and farther 
downstream, the A-structure is strongly elongated in the tip region while the tip (or 
head) itself is lifting up and, at the same time, forming a hairpin-shaped eddy. These 
timeline structures closely resemble those observed in experiments using hydrogen 
bubbles (see, for example, Hama & Nutant 1963; Wortmann 1981; Williams et al. 
1984). 

How do the structures identified by the timelines compare with the A-structure 
identified by surfaces of constant w, as in figures 12(b) and 13? To answer this 
question, in figure 15 (b) the timelines of figure 15 (a)  and the surface of constant w, of 
figure 12(b) are superimposed and plotted as a projection on the peak planes. It is 
obvious that the timelines indeed roughly coincide with the w, = constant structure. 
(Note that the exact shape and size of the w, = constant structure depends on the 
chosen constant.) Thus, marker particles get trapped in the A-vortex by the action of 
the w,-vorticity. 

Another method of identifying the dominant structures in transition experiments is 
to continuously inject dye at a constant (x, y ,  z)-location, which thus produces 
streaklines. What structures are identified by streaklines? Using our numerical data, we 
produced numerical streaklines by releasing particles at fixed x-, y-, and z-positions and 
computing their subsequent positions from the instantaneous velocity data. Figure 16 
shows the streaklines generated by releasing particles at the spanwise peak station and 
at three y-locations that were near the critical layer according to linear stability theory, 
The x-location where the particles were released was at 2 = 300 mm. The streaklines 
are shown together with contours of constant w, (the structures of high shear) and the 
projection of the w,-structure (Iw,l = 0.05) onto the peak plane (in order to identify 
the A-vortex structure). 

Figure 16 is highly illustrative from several points of view. First, in the early 
development (the first structure in figure 16a), the streaklines (defined by the marker 
particles) do not correlate with the w, contours. However, for the second structure 
farther downstream, marker particles are entirely concentrated in locations of high w,. 
Even farther downstream, as obvious from figure 16(b), for the shear-layer structure 
at a later time, t = 10.4T, the particles remain concentrated and trapped in the high- 
shear layer, even as it undergoes strong deformation and a strong lift-up. Thus, 
streaklines generated by injecting dye in the peak plane (and near the critical layer) 
identify the evolution and the later deformation and breakup of the high-shear-layer 
structure. However, as seen from figure 16, the high-shear-layer structure (w, = 
constant) and the A-vortex (as identified by w, = constant) do not coincide. Rather, 
the high-shear layer rides on top of the A-vortex. This was also suggested by Williams 
et al. (1984) based on their experimental findings. Thus, our simulations support 
this somewhat surprising finding of the experimental investigation. In addition, our 
calculations show that the high-shear structure continues to ride on top of the A-vortex 
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FIGURE 16. Comparison of instantaneous w, distribution (isolines) with w, concentration (shaded area 
from figure 12b) and marker particles released in the peak plane at 2 = 300 mm (near critical layer): 
(a) t = 10T; (b) t = 10.4T. 

even as both structures strongly deform and start to break up in the later three- 
dimensional development. Therefore, streaklines generated by releasing particles at the 
peak plane do not mark the A-vortex, but rather the structures of instantaneous high 
shear. However, if the marker particles were released off the peak plane, the streakline 
picture would be different. As seen from figure 15, off-peak particles spiral around the 
sides of the A-vortex and may actually be trapped inside it. Thus, these particles 
identify the A-vortex and not the high-shear layer. 

5.  Conclusions 
A numerical method was developed for solving the complete Navier-Stokes 

equations that is applicable to direct numerical simulations of laminar-turbulent 
transition in boundary layers. The method is based on the so-called spatial model, 
modelling the realistic inflow-outflow geometry as in laboratory experiments. For the 
numerical method, the Navier-Stokes equations are used in vorticity-velocity 
formulations, with three vorticity transport equations for the three vorticity 
components and three Poisson-type equations for the three velocity components. High- 
order finite differences are employed in the downstream and wall-normal directions, 
while the spanwise direction is treated pseudospectrally. The method was thoroughly 
tested by comparison calculations with linear stability theory for both two-dimensional 
and three-dimensional disturbances and for a subharmonic resonance breakdown. In 
the present paper, emphasis was placed on simulating the fundamental breakdown in 
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the controlled transition experiments by Kachanov et al. (1984, 1985). Toward this 
end, the parameters in the calculations were selected such that the experimental 
conditions were closely matched. The results of these simulations agreed remarkably 
well with measurements up to the second spike station, in spite of relatively coarse 
resolution in the spanwise direction. In particular, the numerical results confirmed the 
synchronization of the various wave components within a narrow y-extent that occurs 
during the spike events. Detailed analysis of the numerical data allowed the 
identification of the dominant shear layers and vortical structures. 

Employing various graphical and flow visualization procedures, the dynamical 
evolution and breakup of the various structures could be studied in detail. In 
particular, it was elucidated how different graphical representations and flow 
visualization techniques (such as streaklines) uncover or obscure certain phenomena 
and mechanisms. The results of our simulations unequivocally demonstrate that the 
structures and their dynamical behaviour from the experiments by Kachanov et al. 
(1984, 1985) are similar to those of other controlled fundamental breakdown 
experiments, such as, for example, those by Klebanoff et al. (1962) and Williams et al. 
(1 984). 

The authors would like to thank the referees for their useful comments and the 
Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg for the financial support 
under contracts Fa 117/2-1, Fa 117/2-2, and Fa 117/2-3. We also gratefully 
acknowledge the generous support of computer time provided by the University of 
Stuttgart. 

Appendix. Finite-difference approximations 
We present here the finite-difference approximations used in our numerical scheme 

for the discretization of the equations and boundary conditions given in $2. We use the 
notation f,,, = F,(rnAy, nAx-xxg, t), where 4 stands for the flow variables in Fourier 
space (after transformation using equation (20)). The indices run from n = 0 to N ,  and 
from m = 0 to M in the x- and y-directions, respectively. For brevity, only those indices 
that change from grid point to grid point within each equation are written below. 

The first derivatives in x (needed for 1 < rn < M )  are approximated by 

1 
= - Cf, - f,) + 0(Ax2), 

108fNW1 + (85 - 1 8a2Ax2)fN) + O(Ax4) 
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The first derivatives in x at the wall (m = 0) are approximated by 
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where the aw,/ax-terms on the right-hand sides are known from equation (15). 
The second derivatives in x (needed for 1 ,< m ,< M )  are approximated by 

and 

The first derivatives in y (needed for 1 ,< n 6 N )  for all flow variables except u at m = 1 
are approximated by 

azf I = - (2 + k2y2)fN (equation (1 6)). 
ax2 

(- 12f0-65f1+ 120f2-60f3+20f4-3f5)+O(Ay5).  
1 

60Ay 
and 

For u at m = 1, we use the approximation 

(- 370, + 821, + 36u2 - 8u, + u4) + O(Ay5) 
1 

48Ay 

which takes i3u/ay I m e O  = 0 into account. 

m = 1 are approximated by 
The second derivatives in y (needed for 1 ,< n ,< N )  for all flow variables except u at 
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For u at m = 1, we use the approximation 
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( 2 5 7 ~ ~  - 4 8 0 ~ ~  + 252~1, - 3 2 ~ ,  + 3 ~ , )  + O(Ay4). 
1 

Directly at the wall, we need the approximations 

1 
60Ay 

(- 1 3 7 ~ "  + 3 0 0 ~ ~  - 3 0 0 ~ ~  + 2 0 0 ~ ~  - 7 5 ~ ,  + 1 2 ~ ~ )  + O(Ay5), 

( - 4 1 5 ~ ~ + 5 7 6 ~ ~ - 2 1 6 ~ , + 6 4 ~ , - 9 ~ , ) + O ( A ~ ~ ) .  
1 

and =m 
ay2 m=o 
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